Assessing Pavement Roughness In Urban Environments

The 27th Annual Road Profile Users' Group (RPUG) Meeting Raleigh, NC November 2-5, 2015

Raj Bridgelall, Ph.D. North Dakota State University, Upper Great Plains Transportation Institute

> Jerry Daleiden, P.E. Fugro Roadware, Inc.

Outline

- Introduction
 - Roughness Impact Factors
 - Connected Vehicles
- Methods
 - The International Roughness Index (IRI)
 - The Road Impact Factor (RIF) Transform
- Field Experiments
- Results
- Conclusions

Current Method and Tradeoff

The Connected Vehicle Opportunity

Source: The USDOT (2015)

Can we use Connected Vehicles to characterize ride quality?

What is Ride Quality?

The Connected Vehicle Approach

Accelerometers

- Airbag control
- Inertial navigation
- Stability control
- Fault diagnosis

GPS Receivers

Review of the International Roughness Index (IRI)

The IRI assumes that the Golden Car models the typical vehicle response.

The IRI Wavelength Sensitivity

How does the RIF Transform work?

Time	Latitude	Longitude	Speed	Pitch	Roll	Yaw	Gx	Gy	Gz
1866.466	30.445584	-97.594473	19.30	80.82	33.46	-75.81	0.152	-1.005	-0.137
1870.249	30.445584	-97.594473	19.30	80.82	33.46	-75.81	0.087	-0.919	-0.104
1875.429	30.445584	-97.594473	19.30	80.82	33.46	-75.81	0.028	-0.855	-0.143
1889.969	30.445416	-97.594427	19.33	80.87	33.38	-75.78	-0.009	-1.146	-0.182
1898.306	30.445416	-97.594427	19.33	80.96	34.01	-76.39	0.031	-0.948	-0.042
1902.281	30.445416	-97.594427	19.33	80.96	34.01	-76.39	0.190	-1.058	-0.093
1909.142	30.445416	-97.594427	19.33	80.88	34.01	-76.35	0.222	-1.041	-0.170
1912.815	30.445416	-97.594427	19.33	80.88	34.01	-76.35	0.090	-0.840	-0.172
1919.346	30.445416	-97.594427	19.33	80.88	34.01	-76.35	0.033	-1.029	-0.243
1924.427	30.445416	-97.594427	19.33	80.77	33.32	-75.68	0.007	-1.068	-0.063

- 1) Establish a geo-fence along the road to mark the analysis start position
- 2) Interpolate the path distance based on the time and velocity instants
- 3) Accumulate the distance to the desire length to mark the stop position
- 4) Produce an orientation independent resultant vertical acceleration
- 5) Compute the RIF per unit of distance resolution

How are the RIF and the IRI related?

The RIF and the IRI are directly proportional at a given speed.

The IRI is **simulated** from a **fixed** quarter-car at a **fixed** speed.

The RIF is computed from an **actual** vehicle response at **any** speed.

The Speed Independent Transform

 N_k = Total traversal volume for segment k P_j = Time period j w = Speed band

Database Filters (Decisions)

- Road segment (regions)
- Data range (exclude rain/snow)
- Hour range (peak vs. off-hours)
- Temperature (seasons)
- Speed band (speed limit $\pm \Delta$)
- Speed band width ($\pm \Delta$ tradeoff)
- Vehicle type (popular sedans)

Time-Wavelength-Intensity Transform

The TWIT reports the average roughness experienced at all speeds.

Test Site Location

Site View and Inertial Profiler

Site View and 2000 Toyota Camry

Smartphone Installation

Smartphone Data and Geo-Fence Trigger

Statistics of the RIF/IRI Proportionality

Key Points

- The Student tdistribution is appropriate for sample sizes fewer than 30
- Chi-squared testing cannot reject the hypothesis that the data fits the Student tdistribution (>> 5% significance)
- The margin-of-error approaches 2% with the higher traversal volume from the sedan
- The RIF/IRI ratios reflect the differences in traversal speeds (wavelength sensitivity) and suspension responses

Summary of Results

Key points

- Higher RIF-indices at higher speeds is consistent with the theory
- The VIF of the sedan produces lower RIF-indices then the Van
- The RIF/IRI ratios change slightly across test site
- They slight change in RIF/IRI ratios generally agree across test sites
- The MOE₉₅ approaches 2% as the traversal volume approaches 80

Summary and Conclusions

- The Connected Vehicle approach characterizes ride quality with high accuracy and precision
 - For a given vehicle type
 - For traversal volume beyond 80
 - Will require greater traversal volumes for mixed vehicle populations
 - Convergence is guaranteed vis-à-vis the law of large numbers
- The technology is practice ready
 - Use smartphones now to collect the data
 - Implement the RIF-transform in a GIS platform