“Smooth Ride?”
Contractor Performed Tests in the Quality Assurance Process:

The Nevada Experience

Presented by:
Steven Hale, P.E.
Outline

• Roadways maintained by NDOT

• NDOT’s Pavement Management System

• Smoothness specification
 - HMA pavements
 - PCC pavements
 - Bridge decks
Outline

• Contractor’s results for acceptance

• What NDOT field inspectors are taught

• Success of using contractor’s results
 – Smoothest interstates in 2003
 – National pavement conditions in 2007

• What the future holds
Roadways Maintained by NDOT

- Interstate (NHS) - 560 miles
- NHS Routes (except Interstates) - 1,545 miles
- STP Routes - 2,674 miles
- Other Routes - 670 miles
Roadways Maintained by NDOT

5,449 MILES
State System is 21% of all improved roads and streets in the state but carries 59% of all the traffic miles.

NHS - National Highway System
STP - Surface Transportation Program

NATIONAL HIGHWAY SYSTEM (except interstate)
1,545 MILES (28.4%)

INTERSTATE (NHS)
560 MILES (10.3%)

STP
2,674 MILES (49.1%)

ROADS NOT IN OTHER CATEGORIES
670 MILES (12.3%)

10/18/05
NDOT’s Pavement Management System

- How is ride data collected
 - NDOT uses a ride van
 - Collects 10,000 data points per second
 - Data is processed by proprietary software
NDOT’s Pavement Management System

• Frequency of ride testing:
 - Data is collected on NHS routes yearly
 - Data is collected on STP & HPMS in odd years

• Importance of ride data
 - Data assists in project prioritization
Smoothness Specification for Roadways
Smoothness Specification for Roadways

- Straightedge measurement
 - NDOT personnel perform measurement
 - Twelve foot straight edge is used
 - Measurements taken both parallel and perpendicular to centerline
 - Roadway surface shall not vary by more than 1/4 in. (1/8 in. for PCCP)
Smoothness Specification for Roadways
Smoothness Specifications for Roadways

- Profilograph measurement
 - Contractor provides California type profilograph
 - Contractor performs testing
 - Other types of profilographs can be used
 - NDOT oversees testing and evaluates results
Smoothness Specification for Roadways

- NDOT specifies three different smoothness types
 - Type A
 - Type B
 - Type C

Only Type A smoothness used for PCCP
Smoothness Specification for Roadways

- “Must Grind” specification
 - Corrective measures for dense-graded plantmix and PCCP
 - Corrective measures for an open-graded friction course
Smoothness Specification for Bridge Decks
Smoothness Specification for Bridge Decks

- **Straigtedge measurement**
 - NDOT personnel perform measurement
 - A 12 ft straight edge is used
 - Roadway surface shall not vary by more than 1/8 in. (Without overlay)
 - Roadway surface shall not vary by more than 1/3 in. (With an overlay > 1 in. thickness)
Smoothness Specification for Bridge Decks

• Profilograph measurement
 - Only concerned with “Must Grinds”

• “Must Grind” specification
 - Corrective measures for a bridge deck
Contractor’s Results for Acceptance

- NDOT does not perform profilograph testing
 - Lack of manpower
 - Initial cost of profilograph equipment
 - Maintenance costs associated with equipment
What NDOT Field Inspectors are Taught

- Prior to profilograph testing:
 - Review Standard Specifications
 - Review project’s Special Provisions
 - Entire length of each traffic lane is measured within 48 hours of each days placement
What NDOT Field Inspectors are Taught

- Assist in calibration of profilograph
- Wheelbase = 25’
- Tire pressure = 25 psi or manufacturer’s spec.
- Vertical height calibration
- Longitudinal distance calibration
- Check scale on computerized chart
- Check computer printout
What NDOT Field Inspectors are Taught

- During profilograph testing:
 - Be present during all operations
 - Use 12’ straightedge to perform spot checks
 - Testing performed in correct location
 - Testing performed in direction of travel
 - Check speed of the profilograph
What NDOT Field Inspectors are Taught

- After profilograph testing:
 - Test form is complete and accurate
 - Accuracy is especially important if ride incentive/disincentive specified on project
NEVADA DEPARTMENT OF TRANSPORTATION

Report of Profilograph Test

Report Number: T-1-1 Contract No: 3265

Lane Description: Southbound
Date of Test: 10/17/2005
Lot No: N/A
Date of Placement: 10/18/2005
Type of Material: Plantmix-Type 2

Smoothness Type: A

Contractor: Road & Highway Builders

Type of Material: SPF-95A

<table>
<thead>
<tr>
<th>Station to Station</th>
<th>Section Length (km or mile)</th>
<th>Counts (tenths of an inch)</th>
<th>High Point Location(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X ~ 93+00 to X ~ 96+76</td>
<td>0.071</td>
<td>2.8</td>
<td>96.76-9930=976/5280=0.171</td>
</tr>
<tr>
<td>X ~ 96+76 to X ~ 102+04</td>
<td>0.100</td>
<td>3.5</td>
<td>1/0.171=2.8 - 3.0 Counts</td>
</tr>
<tr>
<td>X ~ 102+04 to X ~ 107+32</td>
<td>0.100</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>X ~ 107+32 to X ~ 112+60</td>
<td>0.100</td>
<td>6.5</td>
<td>Fails to meet in./0.1mi Spec. Bump grind @ 112+37</td>
</tr>
<tr>
<td>X ~ 112+60 to X ~ 117+88</td>
<td>0.100</td>
<td>20.0</td>
<td>Fails to meet in./0.1mi Spec. Bump grind @ 117+96, 116+12, 115+20</td>
</tr>
<tr>
<td>X ~ 117+88 to X ~ 123+16</td>
<td>0.100</td>
<td>6.5</td>
<td>Fails to meet in./0.1mi Spec. Bump grind @ 118+64</td>
</tr>
<tr>
<td>X ~ 123+16 to X ~ 128+44</td>
<td>0.100</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>X ~ 128+44 to X ~ 133+72</td>
<td>0.100</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>X ~ 133+72 to X ~ 139+00</td>
<td>0.100</td>
<td>7.0</td>
<td>Fails to meet in./0.1mi Spec. Bump grind @ 136+44</td>
</tr>
<tr>
<td>X ~ 139+00 to X ~ 144+28</td>
<td>0.100</td>
<td>2.5</td>
<td></td>
</tr>
</tbody>
</table>

TOTALS: 0.971 58.3

Average Profile Index: 6.004

PROFILE INDEX

<table>
<thead>
<tr>
<th>Type</th>
<th>Counts (mm)</th>
<th>Smoothness Type</th>
<th>Metric: P.I. = 1 km/Length of profiles in km X counts in mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>80 (5)</td>
<td>8 (0.5)</td>
<td>mm/km (in./mi)</td>
</tr>
<tr>
<td>B</td>
<td>110 (7)</td>
<td>11 (0.7)</td>
<td>mm/0.1km (in./0.1mi)</td>
</tr>
<tr>
<td>C</td>
<td>160 (10)</td>
<td>16 (1.0)</td>
<td></td>
</tr>
</tbody>
</table>

Remarks:

Resident Engineer:
Inspector:
Operator:

[Signature]

[NDOT 444-073]
[REV 12/03]

Distribution: Resident Engineer, District, Headquarters, Construction, Contractor
Success of Using Contractor’s Results

- Nevada ranked #1 in 2003
 - 75% of Interstates w/ “very smooth” condition
 - Georgia ranked second with 68%
 - Most states are well under 50%
Success of Using Contractor’s Results

• Nevada ranked #2 in 2007
 - 81% of its roadways in “good condition”
 - Georgia was ranked #1 with 92%
National Pavement Conditions

Pavement Conditions by State, 2007
Includes all Arterial Routes, including Interstates, freeways, and major urban routes

<table>
<thead>
<tr>
<th>State</th>
<th>Poor</th>
<th>Mediocre</th>
<th>Fair</th>
<th>Good</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delaware</td>
<td>10</td>
<td>17</td>
<td>29</td>
<td>44</td>
</tr>
<tr>
<td>Florida</td>
<td>2</td>
<td>11</td>
<td>10</td>
<td>76</td>
</tr>
<tr>
<td>Georgia</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>92</td>
</tr>
<tr>
<td>Hawaii</td>
<td>27</td>
<td>44</td>
<td>19</td>
<td>10</td>
</tr>
<tr>
<td>Idaho</td>
<td>11</td>
<td>14</td>
<td>18</td>
<td>57</td>
</tr>
</tbody>
</table>

Source: TRIP analysis based on Federal Highway Administration data
© 2009 by the American Association of State Highway and Transportation Officials.
All rights reserved. Duplication is a violation of applicable law.
National Pavement Conditions

Pavement Conditions by State, 2007

Includes all Arterial Routes, including Interstates, freeways, and major urban routes

<table>
<thead>
<tr>
<th>State</th>
<th>Poor</th>
<th>Mediocre</th>
<th>Fair</th>
<th>Good</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montana</td>
<td>3</td>
<td>8</td>
<td>13</td>
<td>76</td>
</tr>
<tr>
<td>Nebraska</td>
<td>7</td>
<td>17</td>
<td>14</td>
<td>62</td>
</tr>
<tr>
<td>Nevada</td>
<td>5</td>
<td>8</td>
<td>14</td>
<td>81</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>13</td>
<td>14</td>
<td>13</td>
<td>60</td>
</tr>
<tr>
<td>New Jersey</td>
<td>46</td>
<td>32</td>
<td>13</td>
<td>10</td>
</tr>
</tbody>
</table>

Source: TRIP analysis based on Federal Highway Administration data
© 2009 by the American Association of State Highway and Transportation Officials.
All rights reserved. Duplication is a violation of applicable law.
National Pavement Conditions

• The top five states:

1. Georgia – 92% (good condition)
2. Nevada – 81% (good condition)
3. Montana – 76% (good condition)
4. Florida – 76% (good condition)
5. Kansas – 75% (good condition)
What the Future Holds

- Continue using contractor’s results
- Develop profilograph workshop for inspectors
- Ride incentive/disincentive for PCCP
- Possible movement to a zero blanking band
- Possible movement to IRI
2011 RPUG Conference
Questions???
Thank you