

Instantaneous IRI

John B. Ferris Associate Professor, Mechanical Engineering Director, Vehicle Terrain Performance Lab

Instantaneous IRI

Motivation

Background

- Golden Qcar is Linear Time-Invariant (LTI)
- LTI → Impulse Response and Superposition

Proposed Definition of Instantaneous IRI (IRI_i)

- Contribution of Input to Response, f_{ij}
- Problem: IRI is nonlinear integrator
- Desired Properties: average IRI_i = IRI
- Definition of IRI_i
- Validate Properties

Comments and Discussion

Dr. John B. Ferris
Associate Professor

Slide 2 brabantio.me.vt.edu/sites/VTPL

Golden Qcar is Linear Time-Invariant

WirginiaTech

Qcar model comprises

- Masses mass does not change
- Linear Springs rate doesn't change
- Linear Dampers doesn't change
- Linear Time Invariant (LTI)

Equations of Motion are

$$\begin{split} & m_1\ddot{x}_1 + c\dot{x}_1 - c\dot{x}_2 + k_1x_1 - k_1x_2 = 0 \\ & m_2\ddot{x}_2 + c\dot{x}_2 - c\dot{x}_1 + \left(k_1 + k_2\right)x_2 - k_1x_1 = f(t) = k_2y \end{split}$$

LTI → Impulse Response

WirginiaTech

Linear Time Invariant (LTI)

- → Completely defined by *Impulse Response*
- "Hit" it (impulse, \hat{F}) at t=0
- → Response contains all info about LTI system

Dr. John B. FerrisAssociate Professor

Slide 4 brabantio.me.vt.edu/sites/VTPL

LTI → Superposition

Why do we care: LTI Systems → Superposition

- Break up complicated forces into sums of simpler forces, compute the response and add to get the total solution
- If x_1 and x_2 are solutions to an LTI system then

Dr. John B. FerrisAssociate Professor

Slide 5 brabantio.me.vt.edu/sites/VTPL

LTI → Superposition

Why do we care: LTI Systems → Superposition

Dr. John B. FerrisAssociate Professor

Slide 6 brabantio.me.vt.edu/sites/VTPL

Qcar is LTI

WirginiaTech

Linear Time Invariant (LTI)

→ Completely defined by Impulse Response

X₁: sprung mass X₂: unsprung mass 0.3 0.5 time (sec)

Dr. John B. FerrisAssociate Professor

Slide 7 brabantio.me.vt.edu/sites/VTPL

x 10⁻³

Qcar is LTI

WVirginiaTech

 \dot{z} : suspension velocity

 \dot{h} : Impulse Response for suspension velocity a function of the Qcar parameters

Slide 8 brabantio.me.vt.edu/sites/VTPL

Dr. John B. FerrisAssociate Professor

Contribution of Input to Response

WirginiaTech

 f_{ij} : fraction of response at j due to excitation at i

Properties of f_{ij}

$$f_{ij} \ge 0 \ \forall i, j, and f_{ij} = 0 \ \forall i > j$$

$$\sum_{i=1}^{N} f_{ij} = 1$$

Dr. John B. FerrisAssociate Professor

Slide 9 brabantio.me.vt.edu/sites/VTPL

Contribution of Input to Response

WirginiaTech

Skipping some math... define f_{ij} as

$$f_{ij} = \frac{\left| (t_j - t_i) \dot{h}_{(t_j - t_i)} z_i \right|}{\sum_{i=1}^{j} \left| (t_j - t_i) \dot{h}_{(t_j - t_i)} z_i \right|}$$

Which is just a function of the impulse response, the road heights, and the times

Dr. John B. FerrisAssociate Professor

Slide 10 brabantio.me.vt.edu/sites/VTPL

Golden Qcar is LTI

WVirginiaTech

So... what's the problem??

- IRI is nonlinear (abs values)
- We can rewrite IRI for sampled data as

$$IRI = \frac{\int_{T_1}^{T_2} |\dot{z}_{(t)}| dt}{x_{(T_2)} - x_{(T_1)}}$$

$$IRI = \frac{1}{L} \sum_{j=1}^{N} |\Delta z_j|$$

$$\left|\Delta z_{j}\right| = \left|z_{j} - z_{j-1}\right|$$

$$L = x_{(T_2)} - x_{(T_1)}$$

Dr. John B. FerrisAssociate Professor

Slide 11 brabantio.me.vt.edu/sites/VTPL

Desired Properties of IRI;

WirginiaTech

Average IRI_i = IRI

$$IRI = \frac{1}{L} \sum_{j=1}^{N} IRI_{i}$$

Dr. John B. FerrisAssociate Professor

Slide 12 brabantio.me.vt.edu/sites/VTPL

Definition of IRI_i

Substitute

$$\sum_{i=1}^{N} f_{ij} = 1$$

into

$$IRI = \frac{1}{L} \sum_{j=1}^{N} |\Delta z_j|$$

Gives

IRI =
$$\frac{1}{L} \sum_{j=1}^{N} \left(\sum_{i=1}^{N} f_{ij} \right) |\Delta z_j|$$

$$L = \sum_{j=1}^{N} \Delta x$$

Define

$$IRI_{i} = \frac{1}{\Delta x} \sum_{j=1}^{N} f_{ij} |\Delta z_{j}|$$

Dr. John B. Ferris Associate Professor

Slide 13 brabantio.me.vt.edu/sites/VTPL

Validate Properties of IRI

WirginiaTech

Define

$$IRI_{i} = \frac{1}{\Delta x} \sum_{j=1}^{N} f_{ij} |\Delta z_{j}|$$

Okay…is this valid?

Average IRI_i = IRI??

$$\frac{1}{N} \sum_{i=1}^{N} IRI_{i} = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{1}{\Delta x} \sum_{j=1}^{N} f_{ij} |\Delta z_{j}| \right)$$

$$= \frac{1}{N\Delta x} \sum_{j=1}^{N} |\Delta z_{j}| \left(\sum_{i=1}^{N} f_{ij} \right)^{7} = 1$$

Average
$$IRI_i = \frac{1}{L} \sum_{j=1}^{N} |\Delta z_j| = IRI$$

Dr. John B. FerrisAssociate Professor

Slide 14 brabantio.me.vt.edu/sites/VTPL

Comments and Discussion

WirginiaTech

Definition of Instantaneous IRI, IRI

$$IRI_{i} = \frac{1}{\Delta x} \sum_{j=1}^{N} f_{ij} |\Delta z_{j}|$$

Can have varying speeds and is purely a function of the Qcar parameters, the measurement times and the road heights!

Thank you! Questions??

Dr. John B. FerrisAssociate Professor

Slide 15 brabantio.me.vt.edu/sites/VTPL

