Potential for Comprehensive Evaluation of Pavement Surface with 3D Laser Imaging

Kelvin C.P. Wang
Oklahoma State University and WayLink Systems Co.

kelvin.wang@okstate.edu
kwang@waylink.com

The 23rd Annual Road Profile Users' Group (RPUG) Meeting
The Harvey's Lake Tahoe in Stateline, NV, September 27 to 29, 2011.
Problem Statement

- Manual Survey
 - High Cost, Inconsistent, Not Repeatable
 - Unknown/Unacceptable Precision & Bias
 - Result: Wastes & Frustrations

- Safety
 - How Surface Characteristics Impact Safety of Driving Public?
Needs of Quality Pavement Condition Data

■ Design

- New mechanistic oriented approaches rely on pavement cracking & rutting data for analysis
- No reports of good cracking data in the US for design!

■ Management

- Pavement cracking: critical information for making rehabilitation decisions along with roughness, rutting, & Others
Pavement Surface Safety

Characteristics
- Surface Texture
- Cross Slope
- Rutting & Crowning
- Super-elevation
- Radius
- Grades

Data Collection: Different Devices/Passes, Limited Space (Line Instead of Area)
Support for New Technology

- Federal Highway Administration
 - Substantial Effort and Interest in Recent Years
 - Pavement Design, Management, and Safety

- Federal Aviation Administration
 - Largest Indoor Pavement Test Facility
 - Focused on Pavement Materials, & Management

- University of Arkansas & Oklahoma State University

- AR and OK Departments of Transportation

- Clients who Demand the State-of-Art Field-Deployable Technologies
The Team @ Universities/WayLink

- Work Started in the mid 1990’s on Pavement Information Systems
 - Multimedia Databases
 - Pavement Management & Decision Systems
 - Field Deployment at Arkansas Highway Dept

- Distress Survey Research Started in the Late 1990’s with Limited Funding
 - Digital Frame Cameras, Strobe Lights
 - Feasibility of Using Digital Line Cameras
 - Initial Automated Processing
 - PaveVision3D, from Sensor to Solutions
Opportunities for Fully Automated Cracking Survey

- Precision & Bias Issues
 - Results from Manual, Semi-Automated, & Automated Technologies with 2D Images

- Vast Improvements in Cost & Performance of Components in Lasers, Cameras, Computing, & Software Tools

- Therefore, Push for A New Way to Gather Data
 - Actual 3D Representation of Pavement Surface at 1mm Resolution
Data Collection

- A groundbreaking new technology to overcome many existing limitations, with the capability of obtaining 3D pavement surface models at true 1mm resolution with full-lane coverage & at highway speed (60MPH)

- Current Available Technology Only Collects True 1mm Resolution 3D Pavement Data at 10-15MPH
Data Analysis

- Conducting real-time analysis on macro-texture, longitudinal and transverse profiles, the majority of surface distresses, and roadway geometric data
 - Single Vehicular Platform
 - Huge Cost Savings
 - Acceptable Levels of Precision & Bias for Field Deployment
Ultimate Goal

- Complete Virtual Pavement & Roadway Surface at 1mm Resolution & Software Solutions
- Spatial Accuracy of Collected Data via Remote Sensing Technologies
- Single Platform for Surface Data Analysis for Pavement Engineering, Research, & Beyond
Status of Pavement Survey: Roughness

- Transition from Response Type Device to Inertial Measurement Device
- Fully Automated with Measurable Precision & Bias based on Standards

Limitations
- Largely a Measurement of Single Lines in the Longitudinal Direction; Typically on Two Wheel Paths
- Accuracy Issue at Low Speed, such as 25MPH or Lower
Status of Pavement Survey: Rutting

- Fully Automated with Point Laser Rangers
- Recent Implementations of 1000 plus Points with 3D Laser Imaging
- Limitations
 - Largely a Single Functional Device
Status of Pavement Survey: Texture

- Macro-Texture Measurement: Fully Automated with 64KHz Laser Ranger
- With Measurable Precision & Bias based on Standards
- Limitations
 - Point Laser Forming A Single Line on Pavement Surface
 - A Single Functional Device
Status of Pavement Survey: Cracking

- 2D Laser Imaging for Data Collection at 1mm Resolution
- Most Users: No Automation for Processing;
- Limitations with Full Automation
 - Unknown Precision & Bias
 - Difficulty on Open-Graded or Chip-Seal Surfaces
 - Hitting a Wall in Further Improving Algorithms based on 2D Information
Workstation for Post-Processing
Grid based SCANNER Method
NCHRP-88: “Automated Pavement Distress Survey through Stereovision”

U of Arkansas Team: mid-2000
LIDAR & Its Derivative for Pavement Survey

Polygon Scanner

Transmitter: Modulated Laser

Collection optics

Detector

Scan Line Length = 14 feet

2 x polygon height = 14 feet

90° Field-of-View

Polygonal Scan Mirror

Phoenix Scientific Inc.

www.phnx-sci.com
Laser Line based 3D Imaging Technique on a Conveyor Belt

Basis for Using the Laser Line based 3D Imaging for the Proposed Research

- Unrealistic Illumination Requirement for Stereovision based Principle
- Struggling of the Technology based on LIDAR due to Resolution & Accuracy Issues
- Prototyping Laser Line 3D System by the Team: Positive!
Sensor Design & Prototyping
Sensor Illustrations
Collected 3D Sample Images with the Prototyping System
Spatial Positioning Data with Remote Sensing

- GPS Receiver
- DMI Linear Referencing
- Inertial Measurement Instrument (IMU)
 - Key to availability of positioning data at all times, such as during GPS outages
 - Critical for Building Virtual Pavement
Remote-Sensing based 1mm 3D Pavement Surface in GIS & Databases
Precision & Bias Concept

- Variability: Unevenness, Changeability
- Precision and Accuracy
- Reference Value and Probability
Video Demos